eccactive

To: Jersey Electricity
The Powerhouse
Planning Department
PO Box 45, Queens Road
St. Helier, Jersey, JE4 8NY

or to email: ese@jec.co.uk

9

The Powerhouse, PO Box 45, Queens Road, St. Helier, Jersey, JE4 8NY

G59-3 PARALLEL GENERATOR SIMPLIFIED TYPE VERIFICATION TEST FORM

TYPE TESTED GENERATING UNIT (> 16A PER PHASE BUT ≤ 50 KW 3 PHASE OR 17 KW 1 PHASE)

							7
						ng of Generating Unit between imit split phase, 50kW limit 3	
It includes the Ger	nerating Units s	upplier de	clarc	ation of compliance	with the	requirements of Engineering	Recommendation G59/3.
Type Tested referen	ice number / Mo	del No.			System :	supplier address	
Generating Unit te	chnology						
System supplier na	me						
Tel No.							
Email							
Fax							
Website						Pos	t code
Maximum export c	apacity. Use			kW single phase,	single, sp	plit or three phase system	
separate sheet if m	ore than one			kW three phase			
connection option.				kW two phases in	three ph	nase system	
				kW two phases sp	-	·	
System supplier of	declaration					•	
the above Type Tes	t reference numb	oer will be	mar	nufactured and teste	ed to ensi	ng Unit, that all products sup ure that they perform as stated product meets all the require	d in this document, prior to
Signed				On behalf of			
Power Quality. He is required and the undertaken with a The test should be 12 for single phase	sults supplied to ts. Harmonics. The Manufacturer fixed source of e carried out on a	se tests should de nergy at t	ould cide wo p	be carried out as s which one to use a ower levels a) betwee ating Unit. The res	pecified ind compeen 45 a	in an the supplier then the supprised out by people with sufficient 61000-3-12 or 61000-3-2 lete the relevant table. The chart of the chart of the chart of the comply with the limits of the ase equipment or to table 1 care.	2. Only one set of tests cosen test should be aximum export capacity. able 2 of BS EN 61000-3-
Generating Units v	vith emissions clo	ose to the	limits	s laid down in BS EN	V 61000	ill need no further assessment 0-3-12 may require the installa the connection to a JE 's netwo	ation of a transformer
		G	ener	ating Unit tested t	o BS EN	61000-3-12	
Generating Unit	rating per phase	(rpp)			kVA	Harmonic % = Measured per phase (kVA)	Value (Amps) x 23/rating
Harmonic	At 45-55% of	f rated ou	put	100% of rated ou	tput	Limit in BS EN 61000-3-12	2
	Measured Va MV in Amps	lue %		Measured Value MV in Amps	%	1 phase	3 phase
2						8%	8%
3						21.6%	Not stated
4						4%	4%
5						10.7%	10.7%
6						2.67%	2.67%
7						7.2%	7.2%
8						2%	2%
~	1	1		1	1	2/0	

Not stated

3.8%

10			1.6%	1.6%
11			3.1%	3.1%
12			1.33%	1.33%
13			2%	2%
THD			23%	13%
PWHD			23%	22%

PWND					23%	2270
	(Gener	rating Unit tested	to BS El	N 61000-3-2	
Generating Ur	nit rating per phase (rpp)		<u> </u>	kW		
Harmonic	At 45-55% of rated ou	utput	100% of rated ou	tput		
	Measured Value % MV in Amps		Measured Value MV in Amps	%	Limit in BS EN 61000-3- 2 in Amps	Higher limit for odd harmonics 21 and above
2					1.080	
3					2.300	
4					0.430	
5					1.140	
6					0.300	
7					0.770	
8					0.230	
9					0.400	
10					0.184	
11					0.330	
12					0.153	
13					0.210	
14					0.131	
15					0.150	
16					0.115	
17					0.132	
18					0.102	
19					0.118	
20					0.092	
21					0.107	0.160
22					0.084	
23					0.098	0.147
24					0.077	
25					0.090	0.135
26					0.071	
27					0.083	0.124
28					0.066	
29					0.078	0.117
30					0.061	
31					0.073	0.109
32					0.058	
33					0.068	0.102
34					0.054	
35					0.064	0.096
36					0.051	
37					0.061	0.091
38					0.048	
39					0.058	0.087
40					0.046	

Note the higher limits fo									s, if these	e higher l	imits	are utilised
Power Quality. Voltag	e fluctuations	and	Flicker	The tests s	houl	ld be carried	d out on a sind	ale G	eneratin	a Unit	Resul-	ts should
be normalised to a stand												
Maximum Impedance.												
	Starting	,				Stopping				Running		
	d _{max}	d _c		d _(t)		d _{max}	d _c	d _(t)		Pst		P _{lt} 2 hours
Measured Values at test impedance												
Normalised to standard impedance												
Normalised to required maximum impedance												
Limits set under BS EN 61000-3-11	4%	3.39	6	3.3%		4%	3.3%	3.39	%	1.0		0.65
Test Impedance	R				Ω		XI				Ω	
Standard Impedance	R		0.24 *	•	Ω		XI		0.15 *		Ω	
			0.4 ^						0.25 ^			
Maximum Impedance	R				Ω		XI				Ω	
* Applies to three phase		•		_								
^ Applies to single pha	_			_				-			.1	1. 1
For voltage change and values where the power							ed to convert t	he me	easured \	alues to t	the no	ormalised
Normalised value = Me							urce resistanc	e at te	st point			
Single phase units refere	nce source res	istanc	e is 0.4	Ω								
Two phase units in a thre	ee phase syster	n refe	rence so	ource resist	ance	e is $0.4~\Omega$						
Two phase units in a spli					ance	e is 0.24 Ω						
Three phase units referen						e Cil			111			
Where the power factor Impedance.					to K	ratio of the	test impedanc	e sho	uld be c	lose to the	at of t	the Standard
The stopping test should The duration of these tes Dates and location of th	sts need to con	nply w	ith the p	oarticular re	equir	rements set o	out in the testi	ng no	tes for th	e technol	ogy u	ınder test.
Test start date						Test end do	ıte					
Test location						ı						

Power Quality. DC injection. The tests should be carried out on a single Generating Unit Tests are to be carried out three power defined levels $\pm 5\%$. At 230V a 2kW single phase inverter has a current output of 8.7A so DC limit is 21.75mA, a 10kW three phase inverter has a current output of 43.5A at 230V so DC limit is 108.75mA

Test power level	10%	55%	100%
Recorded value in Amps			
as % of rated AC current			
Limit	4%	3.3%	3.3%

Power Quality. Power factor. The tests should be carried out on a single Generating Unit. Testa are to be carried out at three voltage levels and at full output. Voltage to be maintained within + or -1.5% of the stated level during the test.

_				
	216.2V	230V	253V	
Measured value				
Limit	>0.95	>0.95	>0.95	

Measured at three voltage levels and at full output. Voltage to be maintained within + or - 1.5% of the stated level during the test.

Protection. Frequence	Protection. Frequency tests.								
Function	Setting	Setting			"No-trip tests"	"No-trip tests"			
	Frequency	Time delay	Frequency	Time delay	Frequency/time	Confirm no trip			
O/F stage 1	51.5Hz	90s			51.3Hz				
					95s				
O/F stage 2	52Hz	0.5s			51.8Hz				
					89.98s				
					52.2Hz				
					0.48s				
U/F stage 1	47.5Hz	20s			47.7Hz				
					25s				
U/F stage 2	47Hz	0.5s			47.2Hz				
					19.98s				
					46.8 Hz				
					0.48s				

Note. For frequency Trip tests the Frequency required to trip is the setting \pm 0.1Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting \pm 0.2Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Voltag	ge tests.							
Function	Setting	Setting			"No-trip tests" voltage	"No-trip tests" All phases at same voltage		
	Voltage	Time delay	Voltage	Time delay	Voltage/time	Confirm no trip		
O/V stage 1	262.2V	1.0s			258.2V 2.0s			
O/V stage 2	273.7V	0.5s			269.7V 0.98s			
					277.7V 0.48s			
U/V stage 1	200.1V	2.5s			204.1V 3.5s			
U/V stage 2	184V	0.5s			188V 2.48s			
					180V 0.48s			

Note. For voltage tests the voltage required to trip is the setting plus or minus 3.45V. The time delay can be measured at a larger deviation than the minimum required to operate the projection. The No-trip tests need to be carried out at the setting $\pm 4V$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

a) Protection. Loss of Mains test and single phase test. The tests are to be To be carried out at three output power levels plus or minus 5%, an alternative for inverter connected Generating Units can be used instead.

To be carried out at three output power levels plus or minus 5%, an alternative for inverter connected Generating Units can be used instead.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Generating Unit output	95% of Generating Unit output	95% of Generating Unit output	105% of Generating Unit output	105% of Generating Unit output	105% of Generating Unit output
Trip time. Limit is 0.5s					89.98s	

Note. For technologies which have a substantial shut down time this can be added to the 0.5s in establishing that the trip occurred in less than 0.5s maximum. Shut down time could therefore be up to 1.0s for these technologies.

Indicate additional s	hut down time incl	uded in above resu	lts			
U/F stage 2	47Hz	0.5s			47.2Hz	
					19.98s	
Note as an alternative table.	ve, inverters can be	tested to BS EN 62	2116. The following	ng sub set of tests s	hould be recorde	d in the following
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.	5s					

Single phase test for multi phase **Generating Units**. Confirm that when generating in parallel with a network operating at around 50Hz with no network disturbance, that the removal of a single phase connection to the **Generating Unit**, with the remaining phases connected causes a disconnection of the generating unit within a maximum of 1s.

Ph1 removed Confirm Trip	Ph2 removed	Confirm Trip	Ph3 removed	Confirm Trip	
--------------------------	-------------	--------------	-------------	--------------	--

b) Protection. Frequency change, Stability test								
	Start Frequency	Change	End Frequency	Confirm no trip				
Positive Vector Shift	49.5Hz	+9 degrees						
Negative Vector Shift	50.5Hz	-9 degrees						
Positive Frequency drift	49.5Hz	+0.19Hzs ⁻¹	51.5Hz					
Negative Frequency drift	50.5Hz	+0.19Hzs ⁻¹	47.5Hz					

c) Protection. Re-connection timer. The tests should prove that the reconnection sequence starts in no less than 20s for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1

Test should prove that the reconnection sequence starts in no less than 20s for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1

-	Time delay setting (s)	Measured delay (s)	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 10.5.7.1.			
			At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz
(Confirmation that the Generating Unit does not re-connect					

d) Fault level contribution.									
For machines with electro-magnetic output			For Inverter outp	For Inverter output					
Parameter	Symbol	Value	Time after fault	Volts	Amps				
Peak Short Circuit current	i _p		20ms						
Initial Value of aperiodic current	А		100ms						
Initial symmetrical short-circuit current*	i _k		250ms						
Decaying (aperiodic) component of short circuit current*	ipc		500ms						
Reactance/Resistance Ratio of source*	X/ _R		Time to trip		In seconds				

For rotating machines and linear piston machines the test should produce a 0s - 2s plot of the short circuit current as seen at the **Generating Unit** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

e) Self Monitoring solid state switching	Yes/NA
It has been verified that in the event of the solid state switching device failing to disconnect the Generating Unit, the voltage on the output side of the switching device is reduced to a value below 50 Volts within 0.5 seconds	
Additional comments	